
Journal of Sound and <ibration (2002) 250(5), 835}848
doi:10.1006/jsvi.2001.3976, available online at http://www.idealibrary.com on

0

DYNAMIC STABILITY OF STEPPED BEAMS UNDER
MOVING LOADS

O. J. ALDRAIHEM

Mechanical Engineering Department, King Saud ;niversity, P.O. Box 800, Riyadh 11421,
Kingdom of Saudi Arabia. E-mail: odraihem@ksu.edu.sa

AND

A. BAZ

Mechanical Engineering Department, ;niversity of Maryland, College Park, MD 20742, ;.S.A.
E-mail: baz@eng.umd.edu

(Received 12 February 2001, and in ,nal form 16 July 2001)

The dynamic stability of a stepped beam subjected to a moving mass is investigated in this
study. The equations of motion for transverse vibrations of the beam are developed in distributed
parameter and "nite element forms. The impulsive parametric excitation theory is used to predict
the stability of the beam when subjected to periodic parametric excitations. The accuracy of the
theory is veri"ed by obtaining the stability boundaries of a simply supported beam and
comparing the results with the results reported in the literature. Stability maps are then obtained
for clamped}free uniform beams as well as clamped}free stepped beams. It is found that the
stability of certain beam modes can be improved by providing the beam with appropriately
spaced steps. It is shown that better stability characteristics can be obtained by using
piezoelectric actuators. Stability analyses of beams with periodic piezoelectric and/or viscoelastic
steps are a natural extension of the present work.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

A wide variety of beam-like structures are subjected to moving loads. Examples of these
structures include bridges, #uid pipes, gun barrels, rails, and work pieces on machine tools.
The dynamic behavior of this class of structures is quanti"ed by considering their dynamic
response and/or dynamic stability. In the dynamic response analyses, the system behavior is
determined in the time and/or frequency domain. The analyses of dynamic stability involve,
however, the computation of the boundaries between the stable and unstable regions. This
is usually achieved by constructing the stability maps in the appropriate planes of system
parameters.

The equations governing the dynamics of beams under moving loads have periodically
time-varying coe$cients resulting in the well-known class of parametrically excited
vibrations. Considerable research e!ort has been put forth in studying the dynamic
response of such a class of structural vibrations [1}12]. However, investigation of the
dynamic stability has been limited only to a few classes of uniform beams [13}18]. The
reason for such a limitation is due to the fact that the techniques used to study the stability
022-460X/02/100835#14 $35.00/0 � 2002 Elsevier Science Ltd.
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were based on the Mathieu}Hill method which cannot be easily employed for non-uniform
beams with general boundary conditions. The Mathieu}Hill method was successfully
utilized to provide approximate stability characteristics of the system [19, 20]. However,
application of the method becomes di$cult when the parametric excitation is not simple
harmonic in time.

The studies of the dynamic stability of beams under moving loads include the work of
Katz et al. [13], Benedetti [14], Nelson and Conover [15], Housner [16], Gregory and
Paidoussis [17, 18]. For example, Housner [16] studied the dynamic stability of uniform
pipes supported at both ends and conveying #uids. The work of Gregory and Paidoussis
[17, 18] focused on obtaining the stability conditions of uniform cantilever pipes. Nelson
and Conover [15] studied the dynamic stability of a simply supported uniform beam
carrying a continuous series of mass particles using Floquet theory and the approximate
Galerkin's method. Benedetti [14] extended the work of Nelson and Conover in order to
predict the stability maps of a simply supported uniform beam using the Mathieu}Hill
method. Katz et al. [13] investigated the dynamic stability of a uniform beam with simply
supported ends. The beam was subjected to a moving concentrated force that was
de#ection-dependent. The stability regions were predicted by using the Mathieu}Hill
method along with the Galerkin's method. It is important here to note that none of the
previous studies, however, considered the dynamic stability of non-prismatic beams
subjected to moving loads.

In the present study, the objective is to investigate the dynamic stability of stepped beams
carrying masses. The stepped beam equations of motion are developed in two forms;
namely, a discrete parameter form and a "nite element form. In order to study the stability
of the system, the impulsive parametric excitation method is used [20]. The stability of
a simply supported uniform beam is obtained and the results are compared with the results
available in the literature. The stability maps are then obtained for uniform and stepped
beams with clamped}free boundary conditions.

2. THEORY AND FORMULATION

The system under consideration consists of a stepped beam of length ¸ carrying a moving
particle of mass m

�
travelling with an axial velocity <, which is invariant with time

(Figure 1). The beam's x-axis is assumed to pass through the centroid of the cross-section
and to vibrate in the x}z plane.

The main assumptions for the beam and the moving mass are as follows: (1) the beam is
symmetric and obeys the Euler}Bernoulli theory; (2) the steps can be made of passive solids,
&&viscoelastic''materials, and/or active &&piezoelectric''materials; (3) the beam along with the
Figure 1. Stepped beam carrying moving mass.
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steps have isotropic properties and are perfectly bounded to each other; (4) the moving mass
does not generate friction force and is always in contact with the beam.

2.1. VARIATIONAL FORMULATION

The beam equations of motion along with the associated boundary conditions can be
derived by using the extended Hamilton's principle which is de"ned as

�
��

��

[�(¹!;)#�=
��
]dt" 0, (1)

where � is the "rst variation, ¹ is the system kinetic energy,; is the beam strain energy, and
�=

��
is the virtual work done by the non-conservative forces (which includes structural

damping and forces not accounted for in ; ). If the beam were to carry a continuous
sequence of moving mass, �=

��
must include the mass discharge energy [21]. This is, in

particular, important when one or both of the beam boundaries are free.

2.1.1. Kinetic energy

The kinetic energy of the beam system is the sum of the kinetic energy of the stepped
beam, ¹

�
, plus the kinetic energy of the moving mass, ¹

�
. The kinetic energy attributed to

the stepped beam is given by

¹
�

"

1

2 �
�

�

�A(wR )�dx, (2)

where � is the beam mass density, A is the beam cross-sectional area and w is the transverse
displacement of the beam.

The kinetic energy of the moving mass is

¹
�

"�
�
m

�
[v�

�
(x"x

�
)#v�

	
(x"x

�
)]. (3)

Although the moving mass velocity relative to the beam is a constant<, the components
of the absolute particle velocity vary with time and are given by

v
�
"wR #<w�, v

	
"<(1!�

�
(w�)�)!uR , (4)

with the primes denoting spatial derivative with respect to x and uR de"nes the beam velocity
in the x direction.

From equations (3, 4) and neglecting the higher order terms (i.e., approximate to second
order), the kinetic energy of the moving mass reduces to

¹
�
"�

�
m

�
[wR �#2<wR w�#<�!2uR <]

	�	�
. (5)

Hence, the total kinetic energy is obtained as

¹"

1

2 �
�

�

�A(wR )�dx#

1

2
m

�
[wR �#2<wR w�#<�!2uR <]

	�	�
. (6)

2.1.2. Strain energy

When the steps are provided with piezoelectric capabilities, the piezoelectric strain should
be included in the expression of the strain energy in order to satisfy its de"nition and



Figure 2. (a) Beam cross-section, (b) distributed resultant moment.
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properties (i.e., positive de"nite and path independent). The strain energy of a beam with
piezoelectric steps can be expressed as

;"

1

2 �
�

�

[EI(w�)�#2M

�
w�]dx!(m

�
g)w(x"x

�
)#H

�
(7)

and with reference to Figure 2, the y-component of the piezoelectric moment is de"ned by

M

�

" � �
�

E�

	
z cos �dA,

whereE denotes the Young's modulus, I denotes the beam moment of inertia, �

	
denotes the

axial piezoelectric strain and H


denotes a constant term, which will vanish with the "rst
variation. Also, g denotes the gravitational acceleration.

2.1.3. =ork by non-conservative forces

The work done by the non-conservative forces is only due to the internal damping of the
beam. In this study, the damping is assumed to follow the Kelvin}Voigt model yielding [22]

�=
��

"!�
�

�

�Iw� ��w�dx, (8)

where � is the damping coe$cient.

2.2. DISTRIBUTED-PARAMETER MODEL

Using equation (1) with equations (6)}(8) and performing some manipulations, yields the
equation of motion

�AwK #EIw��"p
�
(x, t)#p

�
(x, t)#p

�
(x, t), (9a)
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where

p
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�
)], (9b)
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�
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with boundary conditions at x "0 and ¸

w speci"ed or �Iw� ���#EIw���"!m
�
<[w� #<w�]

	�	�
[�(x!x

�
)]!(M


�
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and

w� speci"ed or �Iw� ��#EIw��"!M

�
,

where [�(x)] is the Dirac delta function.
Starting from the equality sign, the various terms on the right-hand side of equation (9b)

may be identi"ed, sequentially, as the moving mass inertia term, the Coriolis term,
a centrifugal term. Although the Coriolis term contains a "rst derivative with respect to
time, its in#uence is not the same as a viscous damping term. This will be clearly
demonstrated when the system equations are presented by the discrete form.

2.3. FINITE ELEMENT MODEL

A one-dimensional beam element will be formulated to discretize the system equations.
The shape functions used to approximate the transverse displacement are chosen to be
Hermite cubic polynomials. The displacements of the beam elements are approximated by

w(x, t)"
�
�
���

N
�
(x)v

�
(t), (11)

where v
�
, v

�
(v

�
, v

�
) are transverse displacement and rotation at the left (right) end of the

"nite element, and N
�
are the shape functions given by

[N]"

1!3�
x!x

�
h �

�
#2�

x!x
�

h �
�

(x!x
�
)!2h�

x!x
�

h �
�
#h�

x!x
�

h �
�

3�
x!x

�
h �

�
!2�

x!x
�

h �
�

!h�
x!x

�
h �

�
#h�

x!x
�

h �
�

, (12)

where x denotes the beam global x-co-ordinate, x
�
denotes the distance from the left end of

the beam to the left node of the ith "nite element, and h denotes the length of the "nite
element.

Substitution of equation (11) into the extended Hamilton's principle (1) and integration
over the spatial domains leads to a system of linear di!erential equations

([M]#[M
�
])	v(
#([C]#[C

�
])	v� 
#([K]#[K

�
])	v
"(	f

�

#	f

�

), (13)
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where [M], [C], and [K] are the mass, damping and sti!ness matrices of the beam,
respectively, 	f

�

 is the piezoelectric load vector and

[M
�
]"[0]#m

�
[N]�[N], [C

�
]"[0]#<m

�
([N]�[N�]![N�]�[N]),

[K
�
]"[0]!<�m

�
[N�]�[N�], 	f

�

"	0
#m

�
g[N]�. (14)

In equation (14), it should be explicitly clear that the components of [M
�
], [C

�
], [K

�
] and

	f
�

 matrices (14) are identically zero except those corresponding to the element under the

moving mass. Moreover, [C
�
] is a skew-symmetric matrix; i.e., [C

�
] "![C

�
]. This clearly

declares that the Coriolis term provides dynamic coupling rather than viscous damping.
For n "nite elements, the dimension of each matrix in equation (13) is (2n�2n). Details of

these matrices are given in Appendix A. To simplify the presentation, equation (13) is
expressed as
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with
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2.4. STABILITY ANALYSIS

The considered beam is a time-varying system. The matrices given in equation (15) are
periodic in time with period �"¸/<. This period � corresponds to the actual time needed
for the moving mass to travel the beam length ¸ at a constant speed<. An elegant theory to
study the dynamics stability is suggested by Hsu [20; and Hsu and Cheng [23]] and is called
the &&impulsive parameter excitation theory''. This theory requires the excitations to be
represented by periodic heaviside step functions or Dirac delta functions [23]. The Hsu
theory is very useful for multiple-degrees-of-freedom systems subjected to periodic
parametric excitations of a general nature. The basic idea is to replace the continuously
varying parametric excitation, within a period, by a sequence of a large number of impulses.
This idea facilitates the computational e!ort for higher order systems. Adopting Hsu's
theory, the homogeneous part of the second order system (15), "rst, is cast in a "rst order
form

	Z� 
"[A
�
(t)]	Z
, (17)
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where [A
�
(t)] is periodic of period �. Now, each period is divided intoK equal intervals with
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where

[A
��
�
]"[A

�
(t
�
)] and t

�
"/2K (2k!1) (20)

and H (t) is the heaviside step function. For this system, the growth matrix [H] as de"ned in
reference [20] is

[H]"
�
�
���

eA 
��
� �
��	��	��, t

�
"0. (21)

Let the eigenvalues of [H] be denoted by �. Depending on the values of ���, the stability of
the system (in the Lyapunov sense) may be analyzed as:

(1) The system is asymptotically stable if, for all �'s, ���(1.
(2) The system is unstable if at least one � has ���'1.
(3) The system is stable if some distinct �'s have ���"1 and the rest of �'s have ���(1.

The above analysis is based on the Floquet theory. More details of the previous theory can
be found in references [20, 23].

In order to facilitate the computational e!ort, the bisection method is used to locate the
stability boundary.

3. NUMERICAL EXAMPLES AND RESULTS

3.1. VERIFICATION EXAMPLE

As a "rst example, the dynamic stability, a uniform beam with simply supported ends is
considered. The beam geometry and properties are the same as those considered by Nelson
and Conover [15]. The beam is subjected to a moving mass that travels, at constant speed,
from the left end to the right end. The stability map for this beam is obtained by using two
"nite elements and time intervalsK"200. This small number of "nite elements was chosen
in order to make comparisons with the results of Nelson and Conover in which two modes
were used in the analysis. Figure 3 shows the transverse stability map obtained in the
present study and by Nelson and Conover [15]. The two results agree quite well,
emphasizing the accuracy of the impulsive parameter excitation theory and the developed
"nite element model.

3.2. STEPPED BEAM

A cantilever (C}F) beam, which is "xed at the left end and free at its right end, is
considered. The beam comprises four steps with step factor f"1)25 and ¸

�
"¸

�
as shown

in Figure 1. The steps are made of a material identical to those of the host beam. The beam
is exposed to a moving mass travelling at constant speed from left to right. The internal
damping a, is assumed to be 0)01; see Appendix A. The stability boundary of the stepped
beam in the �}� plane is shown in Figure 4 for 7, 14 and 21 "nite elements. It is clear that the
results depend on the number of "nite elements used in the analysis. This is especially true
for � greater than 1)0 where high order modes dominate the behavior. For the considered
number of "nite elements, Figure 5 demonstrates that the number of "nite elements has no
pronounced in#uence on the results if � is less than 0)1. This indicates that, for very small
values of �, the beam stability is dominated by the "rst mode. When � is less that 0)5, the
results of 14 and 21 "nite elements are essentially the same. Another presentation of the
results is shown in Figure 6 whose abscissa is �"�/(1#�) and ordinate is �"2�����.
� �
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Figure 3. Stability map of a simply supported beam: ** , present results; � , results from reference [15].
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Figure 4. Stability map of a four steps beam for (- - -) 7, (*} ) 14, and (**) 21 "nite elements (F.E.).
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Obviously, this presentation shows the e!ect of the dominant modes on the beam dynamic
stability for various values of �

�
. Note that this presentation is very common in the

community of #uid}structure interactions [17]. If �
�
is less than 0)08, the beam becomes

unstable by the "rst mode. For higher values such that 0)08(�
�
(0)2, the second mode

becomes more prominent and for 0)2(�
�
(0)6, the third cantilever mode becomes

apparent. High order modes become very e!ective when the values of �
�
increase. The jumps

in the stability boundary indicate the appearance of higher dominating modes.
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Figure 5. Stability map of four-stepped clamped}free beam: - - - -, 7 F.E.; **, 14 F.E.; � , 21 F.E.
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Figure 6. Another presentation of the stability map of four steps beam: - - - , 7 F.E.; *} , 14 F.E. and *** ,
21 F.E.
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3.3. UNIFORM VERSUS STEPPED BEAM

In this case, the dynamic stability of cantilever beams with uniform and non-uniform
cross-section is investigated. To ensure accuracy, 21 "nite elements are used in the analysis.
The uniform beam has a hollow circular cross-section of inner diameter D

�
" 14 mm and
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Figure 7. Stability map of uniform and four-stepped C}F beam: ** , 4 steps; - - -, uniform.
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Figure 8. Another presentation of the stability map of uniform and four steps beam.** , 4 steps; } } } , uniform.

844 O. J. ALDRAIHEM AND A. BAZ
outer diameter D
�
"16mm. The non-uniform beam contains four steps and has a hollow

circular cross-section of inner diameter D
�
. Furthermore, the outer diameter of the stepped

regions is D
�
and the remaining regions have diameters of 0)8D

�
. Figures 7 and 8 show the

stability maps of uniform and stepped beam in two di!erent planes; namely, the �}� plane
and the �

�
}�

�
plane. When �(0)1 or (�

�
(0)08), the stepped beam loses stability at � (or �

�
)

smaller than those of a uniform beam. This is because the uniform beam sti!ness is higher
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than that of the stepped beam. In the range 0)1(�(0)55 or (0)08(�
�
(0)36), the stepped

beam has better stability characteristics than that of a uniform cross-section. For the
considered ranges, the stability of the stepped beam is governed by a number of modes that
are greater than those of a uniform beam. This is clearly shown by the number of jumps in
the stability maps.

3.4. STEPPED PIEZOELECTRIC BEAM

In this case, the dynamic stability of a cantilever beam under a moving mass travelling at
constant speed from left to right end is investigated. The beam comprises four PZT5H
piezoelectric steps with step factor f"1)25 and ¸

�
"¸

�
as shown in Figure 1. Twenty-one

"nite elements are used in the analysis. The host beam has a hollow circular cross-section of
inner diameter D

�
"14mm and outer diameter D

�
"16mm. The piezoelectric steps are

perfectly attached to the host beam. Figure 2a depicts the beam cross-section at a step
region. Each piezoelectric step is supplied with actuation voltage such that the piezoelectric
moment is related to the second derivative of the de#ection at the step ends and is given by

M�
�
"gain(w�

����� ���
!w�

���� ���
) .

Figures 9 and 10 show the stability maps of uniform and stepped (gain"0) piezoelectric
beam in two di!erent planes; namely, the �}� plane and the �

�
}�

�
plane. When �(0)1 or

(�
�
(0)08), the uniform beam loses stability at � (or �

N
) smaller than those of a stepped beam.

This is because, in this case, the stepped beam is sti!er than a uniform beam. The "gures also
show the stability maps of beams controlled by piezoelectric steps. It is clear that the beam
stability can be signi"cantly improved by the piezoelectric steps. And, the larger the control
gain the better the stability characteristics. In the range 0)8(�(1)8 or (0)4(�

�
(0)6), the

piezoelectric actuators have an insigni"cant e!ect on the stability characteristics.
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Figure 9. Stability map of uniform and four steps piezoelectric C}F beam: } } } , unform; }�} , gain"0;
*}* , gain"42; *}¤ , gains"82.



0 0.4 0.8
0

8

16

�

Stable

Unstable

 �_

_

Figure 10. Another presentation of the stability map of uniform and four steps piezoelectric C}F beam: } } } ,
uniform beam; ** , gain "0; }�} , gain "42; }}�} } , gain "84.
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4. CONCLUSIONS

The equations of motion of a stepped beam subjected to moving mass are formulated and
presented in two forms; namely, distributed parameter form and "nite element form. Unlike
the previous studies, which employ Galerkin's method along with Mathieu}Hill method,
the authors employed "nite element techniques along with impulsive parametric excitation
to investigate the dynamic stability of the beam. The stability analysis of the present study is
veri"ed by examining a simply supported beam and comparing the results with the
previously reported results in the literature. Stability maps are obtained for clamped}free
stepped beam and for clamped}free uniform beam. For large ratios of moving mass to beam
mass, more "nite elements are needed to accurately identify the stability boundaries. It is
also found that the stability of certain beam modes can be improved by using the stepped
beam con"guration. It is shown that a better stability characteristic can be obtained by
using piezoelectric steps. The analysis developed in the present study is being extended to
investigate the dynamic stability of beams carrying a series of mass particles. Furthermore,
stability analysis of beams with periodic piezoelectric and/or viscoelastic steps is a natural
extension of the present work.

REFERENCES

1. S. A. SIDDIQUI, M. F. GOLNARAGHI and G. R. HEPPLER 2000 Journal of Sounds and<ibration 229,
1023}1055. Dynamics of #exible beam carrying a moving mass using perturbation, numerical and
time}frequency analysis techniques.

2. M. ABU HILAL and H. S. ZIBDEH 2000 Journal of Sound and <ibration 229, 377}388. Vibration
analysis of beams with general boundary conditions traversed by a moving force.

3. M. ICHIKAWA, Y.MIYAKAWA and A. MATSUDA 2000 Journal of Sound and<ibration 230, 493}506.
Vibration analysis of the continuous beam subjected to a moving mass.

4. M. A. FODA and Z. ABDULJABBAR 1998 Journal of Sound and <ibration 210, 295}306. A dynamic
green function formulation for the response of a beam structure to a moving mass.



STEPPED BEAM STABILITY 847
5. E. ESMAILZADEH, and M. GHORASHI 1995 Journal of Sound and <ibration 184, 9}17. Vibration
analysis of beams traversed by uniform partially distributed moving masses.

6. J. R. RIEKER and M. W. TRETHEWEY 1999 Mechanical Systems and Signal Processing 13, 31}51.
Finite element analysis of an elastic beam structure subjected to a moving distributed mass train.

7. D. Y. ZHENG, Y. K. CHEUNG, F. T. K. AU and Y. S. CHENG 1998 Journal of Sound and <ibration
212, 455}467. Vibration of multi-span non-uniform beams under moving loads by using modi"ed
beam vibration functions.

8. J. R. RIEKER, Y.-H. LIN and M. W. TRETHEWEY 1996 Finite Elements in Analysis and Design 21,
129}144. Discretization consideration in moving load "nite element beam models.

9. Y-H. LIN and M. W. TRETHEWEY, 1990 Journal of Sound and <ibration 136, 323-342. Finite
element analysis of elastic beams subjected to moving dynamic loads.

10. L, FRYBA 1972 <ibration of Solids and Structures under Moving loads. Groningen, The
Netherlands: Noordho!.

11. S. SAIGAL 1986 American Society of Mechanical Engineers Journal of Applied Mechanics 53,
222}224. Dynamic behavior of beam structures carrying moving masses.

12. Y-H. LIN, M. W. TRETHEWEY,H. M. REED, J. D. SHAWLEYand S. J. SAGER 1990American Society
of Mechanical Engineers Journal of <ibration and Acoustics 112, 355}365. Dynamic modeling and
analysis of a high speed precision drilling machine.

13. R. KATZ, C. W. LEE, A. G. ULSOY and R. A. SCOTT 1987 American Society of Mechanical
Engineers Journal of <ibration, Acoustics, Stress, and Reliability in Design 109, 361}365. Dynamic
stability and response of a beam subjected to a de#ection dependent moving load.

14. G. A. BENEDETTI 1974 American Society ofMechanical Engineers Journal of AppliedMechanics 41,
1069}1071. Dynamic stability of a beam loaded by a sequence of moving mass particles.

15. H. D. NELSON and R. A. CONOVER 1971 American Society of Mechanical Engineers Journal of
Applied Mechanics 38, 1003}1006. Dynamic stability of a beam carrying moving masses.

16. G. W. HOUSNER 1965 American Society of Mechanical Engineers Journal of Applied Mechanics 74,
351}358. Bending vibrations of a pipe line containing #owing #uid.

17. R. W. GREGORY and M. P. PAIDOUSSIS 1966a Proceedings of the Royal Society (¸ondon) A 293,
512}527. Unstable oscillation of tubular cantilevers conveying #uid. I. Theory.

18. R. W. GREGORY and M. P. PAIDOUSSIS 1966b Proceedings of the Royal Society (¸ondon) A 293,
528}542.Unstable oscillation of tubular cantilevers conveying #uid. II. Experiments.

19. V. V. BOLOTIN 1964 ¹he Dynamic Stability of Elastic System. San Francisco: Holden-Day.
20. C. S. HSU 1972 American Society of Mechanical Engineers Journal of Applied Mechanics 39,

551}558. Impulsive parametric excitation: Theory.
21. D. B. MCIVER 1973 Journal of Engineering Mathematics 7(3) 249}261. Hamilton's principle for

systems of changing mass.
22. R. W. CLOUGH and J. PENZIEN 1975 Dynamics of Structures, New York: McGraw-Hill.
23. C. S. HSU and W-H. CHENG 1973 American Society of Mechanical Engineers Journal of Applied

Mechanics 40, 78}86. Applications of the theory of impulsive parametric excitation and new
treatments of general parametric excitation problems.

APPENDIX A: BEAM MATRICES

The beam matrices in the "nite element model, given by equation (13), are de"ned as

Mass: [M]" �
�

�

�A[N]�[N]dx,

Sti+ness: [K]" �
�

�

EI[N�]�[N�]dx,

Internal damping: [C]"�
�

�

�I[N�]�[N�]dx,

If � is chosen such that �"a E (i.e., a is a small and positive constant), then [C]"a[K].

Piezoelectric load: 	 f
�

"! �

�

�

M

�
[N�]�dx.
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A cross-sectional area
[A

�
] system matrix (in equation (18))

a small positive constant (in equation (A.4))
[C] beam damping matrix
[C

�
] skew matrix due to moving mass

D outer diameter of the beam
D

�
inner diameter of the beam

E beam Young's modulus
f step factor (see Figure 1)
	f

�

 piezoelectric load vector

	f
�

 load vector due to moving mass

g acceleration due to gravity
[H] growth matrix (in equation (21))
[H(t)] Heaviside step function
H


constant term (in equation (7))

h "nite element length
I beam moment of inertia
[K] beam sti!ness matrix
[K

�
] sti!ness matrix due to moving mass

¸ beam length
[M] beam mass matrix
[M

�
] mass matrix due to moving mass

M�
�

y-component of the piezoelectric moment
M� piezoelectric resultant moment
m

�
mass of the moving mass

N
�

shape functions
¹ total kinetic energy of the beam system
t time
¹

�
kinetic energy of the elastic beam

¹
�

kinetic energy of the moving mass
; total strain energy of the beam system
u axial displacement of the beam
< speed of moving mass
v
�

nodal d.o.f.
v
	

x-component of the absolute velocity of moving mass
v
�

z-component of the absolute velocity of moving mass
=

��
work of non-conservative loads

w transverse displacement of the beam

Greek letters

� dimensionless mass ratio ("m
�
/�A¸)

� dimensionless speed ratio ("<¸/2��A/EI)
�
�

�/(1#�)"m
�
/(�A¸#m

�
)

�
�

"2�����"<¸�m
�
/EI¸

� "rst variation
[�(x)] Dirac delta function
��
	

axial piezoelectric strain
� damping coe$cient of the beam material
� eigenvalue of the growth matrix H
� mass density of the beam
� time period

Superscripts

T transpose
(�)� "�(z)/�x
(�� ) "�(z)/�t
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